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The first asymmetric total syntheses of both enantiomers of cryptocaryone
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The first asymmetric total syntheses of the (+)- and (�)-cryptocaryones are described. Removal of the
acetal unit of the enone acetal 5, which was obtained in our previous study from the cyclohexadiene ace-
tal 3, afforded the enone acetal 8 in a one-pot procedure. The acylation of 8 with cinnamoyl chloride and
subsequent hydrolysis of the resulting acetal gave the lactol 11. Its oxidation with NIS and tetra-n-butyl-
ammonium iodide (TBAI) finally furnished the natural (+)-cryptocaryone 2. The same procedure from ent-
3 afforded the unnatural one 1.

� 2010 Elsevier Ltd. All rights reserved.
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Figure 1. Structure of cryptocaryone.
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Cryptocaryone was first isolated from the root of Cryptocarya
bourdilloni Gamb in 1972 and its structure was reported as a chal-
cone.1 Its structure was revised in 1985 and its relative structure
was determined as 1 by X-ray analysis.2 In 2001, cryptocaryone
having the same optical rotation was also obtained from the trunk
bark of Cryptocarya infectoria (Bl.) Miq. and its absolute configura-
tion was determined as 2 from an X-ray analysis of its analogue.3

However, its absolute configuration is still confusing. For example,
cryptocaryone was also isolated from Cryptocarya rugulosa in 2009
by Cardellina II and co-workers, and its structure was shown as 1,
although they did not mention its absolute configuration.4 From a
biological aspect, cryptocaryone was reported to show a cytotoxic-
ity against the multi-drug resistant K562-DOX cells in 2001,3 and
quite recently, it was shown to be an inhibitor of the nuclear fac-
tor-jB (NF-jB) activity.4 The NF-jB signaling pathway is active
in many cancers and is a potent therapeutic target. Therefore, cryp-
tocaryone is an important synthetic target in view of its biological
properties.

In this Letter, we present the first asymmetric syntheses of com-
pounds 1 and 2, the enantiomers of each other (Fig. 1), in a concise
manner with unambiguous determination of their absolute config-
urations by chemical synthesis.

During the course of our continuous efforts regarding natural
product syntheses, we have recently succeeded in the intramolec-
ular haloetherification of the cyclohexadiene acetal 3,5 easily ob-
tained from the commercially available 1,4-cyclohexadiene and
chiral (R,R)-hydrobenzoin in two steps and 75% overall yield, to af-
ll rights reserved.
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ka).
, Ritsumeikan University, 1-1-
ford the optically active cyclohexene acetal 4 with multiple chiral
centers. One of its application to asymmetric syntheses of natural
products was conducted via the cyclohexenone acetal 5 obtained
from 4 by hydroboration–oxidation procedure (Scheme 1).6

The cyclohexenone structure and its two asymmetric centers of
5 seemed to be a good precursor of those in structure 2. Since the
structures 1 and 2 are enantiomers of each other, we then studied
the asymmetric syntheses of both enantiomers of cryptocaryone.
The introduction of the side chain at the a0-position of the enone
5 was achieved using LHMDS and cinnamoyl chloride in good yield.
However, the removal of the chiral auxiliary, the diphenylethyl
unit, was unsuccessful. We then first removed the chiral auxiliary
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Scheme 1. Synthesis of the enone acetal 5 from the diene acetal 3.
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Scheme 2. Asymmetric synthesis of (+)-cryptocaryone (2).
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Scheme 3. Asymmetric synthesis of (�)-cryptocaryone (1).
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and successively introduced the side chain as shown in Scheme 2.
The treatment of 5 with CAN in CH3CN–H2O (2/1) at 60 �C allowed
hydrolysis of an acetal unit7 and subsequent removal of the
diphenylethanol unit8 to give the hydroxyl aldehyde 6, which
spontaneously cyclized to afford the lactol 7 as a diastereomeric
mixture in a single operation. The lactol 7 was unstable and easily
decomposed during evaporation and SiO2 column chromatogra-
phy. The treatment of the reaction mixture with MeOH then affor-
ded the Me-ether 8 in 67% yield from 5 in a one-pot operation via
the lactol 7. It is proposed that the lactol 7 converted to the corre-
sponding acetal 810 by the Brønsted acid generated from CAN and
MeOH.9 Acylation at the a0-position of the enone unit of 8 with
LHMDS and cynnamoyl chloride produced the diketone 9, which
was spontaneously converted to the enol form 10. Acidic work-
up then afforded the lactol 1110 (64% yield from 8 in a one-pot
operation). Although usual oxidants such as PCC and PDC gave
poor results, the oxidation of the lactol unit with NIS and
tetra-n-butylammonium iodide (TBAI)11 finally furnished the
structure 210 in 74% yield. In addition to the physical data (1H NMR,
13C NMR, IR, HRMS), the agreement of its optical rotation with
the natural cryptocaryone (½a�25:0

D +761.8 (c 0.69, CHCl3), (lit. [a]D

+776.6 (c 2, CHCl3),1a ½a�25
D +770.7 (c 0.99, CHCl3)3) indicated that

the absolute configuration of the natural one is structure 2.
For confirmation, the structure of 1 was also synthesized

(Scheme 3). Thus, the same procedure from the ent-3,5c prepared
from 1,4-cyclohexadiene and (S,S)-hydrobenzoin, afforded the
structure 1 of cryptocaryone via ent-5. The optical rotation of 1
showed the opposite sign from the natural one (½a�24:9

D �727.7
(c 1.00, CHCl3)). From these facts, the structure of 1 was confirmed
to be an enantiomer of the natural one.

In conclusion, we accomplished the first asymmetric syntheses
of the natural and unnatural cryptocaryones from the commer-
cially available 1,4-cyclohexadiene in a total of seven steps with
a 7.9% overall yield. Furthermore, the information about the abso-
lute structure of the natural one was presented by chemical
synthesis.
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